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Abstract. Rate of thermal relaxation in viscous multi-temperature flows is studied on the basis of the modified Chapman-
Enskog method. A single-component gas with slow VT (vibration-translation) transitions is considered, and the relaxation
rate is studied in the zero- and first-order approximations. The first-order corrections to the relaxation rate depending on
the velocity divergence and difference between vibrational and translational-rotational temperatures are derived, and their
estimates are carried out for different flow conditions. For the specific case of harmonic oscillators, the cross terms in the first-
order relaxation rate and pressure tensor are obtained in the symmetric form allowing one to prove the reciprocal Onsager
relations for the given case.
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INTRODUCTION

Modeling of thermal non-equilibrium viscous flows is a challenging task in computational fluid dynamics (CFD)
due to their importance in re-entry problems and other modern applications. In multi-temperature flows, the set of
governing equations includes conservation equations for mass, momentum and total energy coupled to relaxation
equations for the internal energy modes and equations of chemical kinetics (for chemically reacting mixtures). An
important point for the accurate prediction of flow parameters is a reliable model for the internal energy production
term in the relaxation equations. In CFD, the commonly used expression for the internal energy production rate u̇int
(in the absence of chemical reactions, when coupling between reactions and internal energy is not applicable) is

u̇int = ρ
uint(T )−uint(Tint)

τint
(1)

where ρ is the density, T is the gas temperature, Tint is the internal temperature, τint is the relaxation time for the internal
energy basically calculated using empirical data. This expression is exact only for the specific case of vibrational
relaxation of harmonic oscillators; its derivation requires the Landau-Teller representation of the rate coefficients for
vibrational energy transitions and prohibits multi-quantum jumps [1]. For all other kinds of internal energy relaxation,
Eq. (1) is approximate and requires additional justification. Moreover, for any kind of internal energy relaxation,
the expression (1) is valid only in inviscid gas flows and cannot be used for the Navier-Stokes equations. The main
objective of this study is to find the limits of validity of Eq. (1).

Actually, the problem is not new. The rates of strongly non-equilibrium processes in viscous flows were derived
theoretically by many authors. Thus non-equilibrium chemical reactions in gases without internal degrees of freedom
were considered in Refs. [2, 3, 4], vibrationally excited gases in the state-to-state approach were studied in Refs. [5,
6, 7], the case of coupled vibrational relaxation and dissociation was discussed in Refs. [8, 9, 10]. Recently, the most
general theoretical model for any chemical reaction taking into account internal degrees of freedom and non-linear
effects was developed in [11], and the symmetric cross coupling terms between the normal mean stress and rates
of chemical reactions were derived. In the above references, it was shown that in viscous flows, the rates of non-
equilibrium processes include the first-order corrections which, depending on the flow conditions, may be specified
by various parameters: mixture composition, velocity divergence, affinities of chemical reactions.

Although the problem received much attention in the literature, it is not completely resolved until the present
time. Indeed, the most studies are focused on the rates of chemical reactions, whereas the rate of multi-temperature



vibrational relaxation was not discussed up to now (to the best of our knowledge). Moreover, no numerical estimates
of the first-order corrections to the relaxation rate were performed.

The objective of this study is to derive the rate of vibrational relaxation in the zero- and first-order approximations
of the modified Chapman-Enskog method [7]. For the sake of simplicity, the case of vibrational relaxation in a single-
component gas flow is considered, with the only relaxation channel through vibration-translation VT transitions. The
first-order correction to the relaxation rate is obtained as a function of the velocity divergence and of the difference
between translational-rotational and vibrational temperatures. For the particular case of harmonic oscillators, the first-
order correction is derived in the symmetric form, which makes it possible to determine properly the cross coupling
terms between the relaxation rate and pressure tensor and to prove the reciprocal Onsager–Casimir relations for the
kinetic coefficients. Numerical estimates of the first-order correction to the relaxation rate are carried out for different
flow conditions.

GOVERNING EQUATIONS AND ZERO-ORDER SOLUTION

Consider the case of vibrational relaxation in a single-component diatomic gas A2 of harmonic oscillators under the
condition

τtr < τrot < τVV ≪ τV T ∼ θ (2)

where τtr, τrot , τVV , and τV T are, respectively, the characteristic times of translational, rotational, vibration-vibration,
and vibration-translation relaxation, θ is the characteristic gas-dynamic time. This case was widely studied in the
literature for spatially homogeneous gases and inviscid flows [1]. In the recent paper [12] it is shown that rotational
transitions may contribute to the vibrational kinetics, however in the present work we do not take into account
rovibrational exchanges.

Under the condition (2), the set of collision invariants of rapid processes includes: mass m, momentum mu (u is
the particle velocity), total energy mu2/2+ εi + ε j (εi and ε j are, respectively, vibrational and rotational energies of
the levels i and j), and vibrational energy εi. The corresponding set of macroscopic flow variables consists of density
ρ , macroscopic gas velocity v, total specific energy u, and specific vibrational energy uv, or, which is essentially the
same, ρ , v, gas temperature T , and vibrational temperature Tv.

Starting from the Boltzmann equation, the set of governing equations is derived in the form

dρ
dt

+ρ∇ ·v = 0, (3)

ρ
dv
dt

+∇·P = 0, (4)

ρ
du
dt

+∇·q+P : ∇v = 0, (5)

ρ
duv

dt
+∇·qv = u̇v, (6)

where q, qv are the total internal energy and vibrational energy diffusive fluxes, P is the pressure tensor, u̇v is the rate
of vibrational energy production due to VT transitions:

u̇v = ∑
i j

εi

∫
JV T

i j du =
1
2 ∑

ii′
∆εii′ ∑

j

∫
JV T

i j du =
1
2 ∑

ii′
∆εii′ ∑

kk′
∑
jl j′l′

∫ (
fi′ j′ fk′l′

si jskl

si′ j′sk′l′
− fi j fkl

)
gσ i′ j′k′l′

i jkl d2Ωdu1. (7)

Here, ∆εii′ = εi′ − εi is the vibrational energy variation in a VT transition A2(i)+M = A2(i′)+M, JV T
i j is the collision

operator for VT exchange (see, for instance [7]), fi j is the distribution function, si j is the statistical weight. The
differential cross section σ i′ j′k′l′

i jkl corresponds to a collision between particles on the internal levels i, j, k, l moving
with relative velocity g, which results in the transition to internal levels i′, j′, k′, and l′ whereas the relative velocity
vector after collision appears within the solid angle d2Ω; u1 is the partner velocity. We will assume hereafter that the
vibrational state of a partner M does not vary during the VT transition, i.e. k = k′.

The zero-order distribution function corresponding to the Eq. (2) is well known in the literature [1, 7, 10]

f (0)i j =
( m

2πkT

)3/2 ni s j

Zrot(T )
exp
(
−mc2

2kT
−

ε j

kT

)
(8)



and represents the Maxwell-Boltzmann distribution over velocities and rotational energy with the gas temperature T
and non-equilibrium Boltzmann distribution over vibrational energy with the vibrational temperature Tv

ni =
n

Zvibr(Tv)
exp
(
− εi

kTv

)
. (9)

Here, k is the Boltzmann constant, c = u− v is the peculiar velocity, Zrot and Zvibr are the rotational and vibrational
partition functions, ni are the vibrational level populations, the vibrational statistical weight si = 1.

Based on this distribution function, the transport and production terms for an inviscid flow can be calculated. The
transport terms take the usual form P (0) = pI (p = nkT ), q(0) = 0. The rate of vibrational relaxation can be calculated
substituting Eq. (8) into Eq. (7) and using the microscopic energy conservation. After some transformations, we obtain:

u̇(0)v =−1
2

n∑
ii′

ωii′ ∆εii′ ni k(0)ii′ , (10)

where k(0)ii′ is the zero-order state-specific rate coefficient of the VT transition

k(0)ii′ = ∑
jl j′l′

∫ fi j fkl

nink
gσ i′ j′k′l′

i jkl d2Ωdudu1, (11)

and ωii′ is the parameter characterizing vibrational relaxation

ωii′ = exp
(
−∆εii′

kT
T −Tv

Tv

)
−1. (12)

For the case of weak deviations from equilibrium, when |(T −Tv)/Tv| ≪ 1, this parameter reduces to

ωii′ ≈−∆εii′

kT
T −Tv

Tv
(13)

and becomes linear function of the temperature difference. Consequently, for weak disequilibrium, the vibrational
energy production depends linearly on (T −Tv)/Tv.

Therefore, if the zero-order state-specific rate coefficients are known, the energy production can be easily calculated
using Eq. (10). The rate coefficients k(0)ii′ can be calculated either by direct integration (see Eq. (11)) for a given cross
section or using some analytical or semi-empirical models (SSH, FHO, etc,..., see [13] for the details).

It can be shown that the expression (10) can be reduced to Eq. (1) if the following assumptions are adopted: 1) the
molecular vibrations are modelled by harmonic oscillators with infinite number of levels; 2) only single-quantum
transitions are allowed; 3) the state-specific rate coefficients are connected by the relation k(0)i+1,i = (i+ 1)k(0)10 . Thus,
equation (1) represents a particular case of Eq. (10) for the above restrictions. In the next section we will show that in
a viscous flow, Eq. (1) is not valid even for the assumptions 1)–3).

FIRST-ORDER SOLUTION

Following the procedure of the modified Chapman-Enskog method, the first-order distribution function f (1)i j is obtained
as a function of the derivatives of the macroscopic parameters:

f (1)i j = f (0)i j

(
−1

n
Ai j ·∇ lnT − 1

n
A(v)

i j ·∇ lnTv −
1
n

Bi j : ∇v− 1
n

Fi j∇ ·v− 1
n

Gi j

)
, (14)

where functions Ai j, A(v)
i j , Bi j, Fi j, and Gi j are found from the linear integral equations [7]. The functions Ai j, A(v)

i j ,
Bi j determine the energy fluxes and the non-diagonal elements of the pressure tensor. These transport terms as well as
associated transport coefficients of thermal conductivity and shear viscosity are widely studied in the literature [7, 10].
The first-order energy production rate u̇v is specified by the scalar functions Fi j and Gi j and up to the present time was
not thoroughly investigated.



Starting from the integral equations and auxiliary conditions for Fi j and Gi j given in [7], using the expansion of
unknown functions in the series of orthogonal Sonine and Waldmann-Trübenbacher polynomials

Fi j = ∑
rp

frpS(r)1/2

(
mc2

2kT

)
P(p)

j

( ε j

kT

)
, Gi j = ∑

rp
grpS(r)1/2

(
mc2

2kT

)
P(p)

j

( ε j

kT

)
, (15)

keeping the first non-zero terms of the expansions (15), and assuming that the specific heats of translational and
rotational modes are constant (ctr = 3k/2m, crot = k/m), one can derive linear algebraic systems for the expansion
coefficients frp and grp. Thus the system for grp after simplifications takes the form

β1100g10 +β1001g01 =
3

5kT
u̇(0)v −∑

i j

∫
JV T (0)

i j S(1)1/2P(0)
j du

3
2

g10 +g01 = 0. (16)

Here βrr′pp′ =
[
S(r)1/2P(p)

j ,S(r
′)

1/2P(p′)
j

]
is the bracket integral over the cross sections of rapid processes which can be

expressed in terms of the rotational relaxation time [7, 10]. The system for the coefficients frp looks similarly to (16),
except that the right-hand side of the first equation should be replaced by −2/5.

Calculating the integral in the right-hand side of Eq. (16).1 yields

∑
i j

∫
JV T (0)

i j S(1)1/2P(0)
j du =−1

2
n∑

ii′

∆εii′

kT
ωii′ ni k(0)ii′ − 1

4 ∑
ii′kk′

ωii′ ∑
j j′ll′

∆εrot
jl j′l′

kT

∫
fi j fklgσ i′ j′k′l′

i jkl d2Ωdudu1. (17)

It is interesting to emphasize that the first-order correction to the rate of vibrational relaxation depends, in the general
case, on the variation of rotational energy of colliding particles ∆εrot

jl j′l′ = ε j′ +εl′ −ε j −εl . However, it is reasonable to
assume that ∆εrot

jl j′l′ ≪ ∆εii′ and thus to neglect the second term in Eq. (17). Indeed, such an assumption is not justified
only for light gases like H2, D2 at low temperature conditions. Therefore, taking into account Eq. (10), we obtain

∑
i j

∫
JV T (0)

i j S(1)1/2P(0)
j du =

u̇(0)v

kT
(18)

which allows us to reduce the right-hand side of Eq. (16).1 to −2u̇(0)v /5kT .
Let us now calculate the first-order relaxation rate. If we substitute the first-order distribution function (14) into

Eq. (7) then after some transformations we can found

u̇v = u̇(0)v + u̇(1)v = u̇(0)v − 1
n
( f10∇ ·v+g10)

(
3u̇(0)v − 3

4
n∑

ii′

(
∆εii′

kT

)2

nik
(0)
ii′ + I

(
∆εrot

jl j′l′

))
(19)

where I
(

∆εrot
jl j′l′

)
is the integral depending on the variation of rotational energy similar to that in Eq. (17). Again, if

we assume ∆εrot
jl j′l′ ≪ ∆εii′ , this integral can be neglected compared to other terms in the parenthesis. Then, taking into

account Eq. (10), we obtain the first-order correction u̇(1)v in the final form

u̇(1)v =
3
2
( f10∇ ·v+g10)∑

ii′
∆εii′nik

(0)
ii′

(
ωii′ +

1
2

∆εii′

kT

)
. (20)

It should be noted that the first-order correction to the relaxation rate depends on the velocity divergence ∇ · v and
on the temperature difference (T − Tv)/Tv through the parameter ωii′ . These corrections appear due to spatial non-
homogeneity, compressibility and deviations from the Maxwell-Boltzmann distributions. It is clear that Eqs. (19), (20)
are not compatible with Eq. (1).

In the linearized case of weak deviations from thermal equilibrium, the last expression can be simplified

u̇(1)v =
3
2
( f10∇ ·v+g10)∑

ii′

(∆εii′)
2

kT
nik

(0)
ii′

(
1
2
− T −Tv

Tv

)
. (21)
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FIGURE 1. Contribution of the first-order correction to the total rate δ as a function of Tv for N2 (a) and O2 (b).

Note that for the general case, even for weak disequilibrium, the dependence of u̇(1)v on ∇ · v and (T −Tv)/Tv is not
linear (there is a cross term containing their production). This is not in line with linear irreversible thermodynamics,
where ∇ ·v and (T −Tv)/Tv are considered as independent thermodynamic forces.

For the case of harmonic oscillators when only single-quantum jumps are allowed this contradiction can be
eliminated. Moreover, it is possible to obtain symmetric expressions for the relaxation rate and pressure tensor. Indeed,
for harmonic oscillators, the vibrational energy variation in a collision is constant and we can write

∆εii′ =±(ε1 − ε0) =±∆εv, ωii′ = exp
(
∓∆εv

kT
T −Tv

Tv

)
−1, ∀ i, i′. (22)

Let ∆ε1 = ∆εv, ∆ε2 =−∆εv. Similarly, ω1 and ω2 correspond to the "–" and "+" signs in the above expression. Then,
after some algebra, we can write the last term in Eq. (14) as 1/n∑r=1,2 Gr

i jωr. This makes it possible to derive the
following expressions for the diagonal terms of the pressure tensor π and the first-order correction to the energy
production rate:

p+π =−kT [F,F ]∇ ·v− kT ∑
r=1,2

[F,Gr]ωr, (23)

u̇(1)v = ∑
r=1,2

∆εr

kT
u̇r (1)

v , u̇r (1)
v = kT [Gr,F ]∇ ·v+ kT ∑

s=1,2
[Gr,Gs]ωs. (24)

It is seen that the normal mean stress and the energy production rate depend on the same forces ∇ ·v and ωr. Moreover,
the cross coefficients in these expressions are equal due to the symmetry properties of bracket integrals. Therefore, for
the case of harmonic oscillators, the reciprocal Onsager-Casimir relations usually postulated by thermodynamics can
be accurately proven. The reciprocal relations are valid for both non-linear and linearized (|(T −Tv)/Tv| ≪ 1) cases.
Note that for the general case, such a proof is still not obvious.

Once again, Eq. (24) cannot be reduced to Eq. (1). Consequently, even for the present particular case of harmonic
oscillators with single-quantum jumps, using Eq. (1) in viscous flows is not justified.

The first-order correction to the rate of vibrational relaxation was calculated in N2 and O2 for different flow
conditions. In Fig. 1, the percent contribution of the first-order correction to the total rate δ = u̇(1)v /u̇v ·100% is given
as a function of vibrational temperature for nitrogen (Fig. 1a) and oxygen (Fig. 1b). The temperature is fixed at
T = 5000 K, the pressure and ∇ · v are varied. It is seen that for N2, the contribution of u̇(1)v is not negligible. For
low pressure and large velocity divergence u̇(1)v may be of the same order as u̇(0)v . For O2 the effect is weaker, the
mean contribution of u̇(1)v is within 1-2%. High values of δ at T ≈ Tv are explained by the fact that while approaching
to thermal equilibrium, u̇(0)v tends to zero and, therefore, the only contribution to the relaxation rate is given by u̇(1)v .
However, one should be careful applying multi-temperature models under near-equilibrium conditions, since the limits
of their validity are restricted in this case.
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FIGURE 2. First-order correction u̇(1)v as a function of Tv (a) and contribution of the first-order correction to the total rate δ as a
function of x/R in a nozzle.

Fig. 2a shows typical behaviour of the first-order correction u̇(1)v for nitrogen and oxygen. In Fig. 2b, the contribution
of the first-order correction δ to the total rate is presented for a supersonic expanding flow. A flow in a conic nozzle
with an angle 21◦ is considered. The throat conditions are (1) T0 = 7000 K, p0 = 1 atm for N2 and (2) T0 = 4000 K,
p0 = 1 atm for O2. It is seen that close to the throat (particularly for nitrogen), the first-order effects can influence
noticeably the rate of vibrational relaxation, whereas with rising x/R (R is the throat radius), the contribution of the
first-order correction decreases. Similar calculations have been performed in shock heated flows. The first-order effects
are found to be weak in compressive flows which is not surprising since δ becomes small at high pressures.

CONCLUSIONS

The first-order thermal relaxation rate depending on the velocity divergence and temperature difference is derived
for the case of VT relaxation. For the particular case of harmonic oscillators, the cross coupling terms between the
relaxation rate and pressure tensor are obtained in the symmetric form. The first-order effects are found to be non-
negligible in expanding flows; for high pressures, these effects become weak. The results can be generalized for
chemical-vibrational coupling, relaxation of different types of internal energy, and vibrational relaxation in complex
polyatomic molecules.
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